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Quantum invariants are numerical quantities used in
low-dimensional topology to distinguish knots and (closed)
3-manifolds

M“ = ”M ′ =⇒ ⟨M⟩ = ⟨M ′⟩

The Reshetikhin-Turaev (RT) is a family defined for both
3-manifolds and knots

Theorem (Kuperberg, 2009; Algic and Lo, 2014):
“Computing (or even approximating within good accuracy)
some choices of the RT invariant is #P-hard”
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Consider a logic term with free variables

T : (x ∧ ¬y) ∨ z

P: given an assignment, telling whether the assignment gives
a TRUE statement

Ex.: x → FALSE, y → FALSE, z → TRUE give T → TRUE

NP-hard: for a given term, telling whether there exists one
assignment that makes the sentence TRUE

P
?
= NP

#P-hard: for a given term, counting how many
assignments make the term TRUE
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Nonetheless, we can sometimes restrict the problems so that
finding solutions becomes easier

Ex.: if we only consider terms of form

T : x ∧ ¬x ∧ x ∧ x ∧ ¬x ∧ . . .
then counting TRUE assignments becomes only P

Does restricting the topology yields to easier algorithms?

A manifold M is irreducible∗ if M is not homemorphic to
the direct sum N1#N2 where N1, N2 ̸= S3

A hyperbolic manifold can be equipped with a (complete)
hyperbolic metric

A manifold is small∗ if every embedded orientable surface
on it is compressible

(H.E. and C.M., 2025) No
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Computation of quantum invariants

The proof works by a reduction of the general cases to
restricted manifolds with restricted topology

Suppose we have a machine (oracle) M′ that tells the
invariant of any restricted manifold. We will use it to
construct a machine M that tells the invariant for any
manifold

M ⟨M⟩C
restrict the topology

M ′ M′

M “ ∈ ”#P-hard

assumed efficient

must be the
bottleneck

Show that we can change the manifold, in polynomial time,
to a manifold with the same invariant
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How to represent 3-manifolds?

What happens when we glue compact 2-manifolds (surfaces)
along their common 1-dimensional boundary?

S1 → S1
=

S2 = D2 ∪f D2

Handlebody: a 3-manifold with boundary a closed surface

Heegaard splitting: a gluing of two handlebodies along
their common surface boundary

“Every closed 3-manifold has a Heegaard splitting”

f
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Surface theory

1. The genus of a closed surface is the number of copies of
tori added to form the surface

“Two closed surfaces Σg and Σg′ are homeomorphic if and
only if g = g′”

g = 0 g = 1 g = 2

2. An (essential) curve is (the image of) a proper embedding
S1 in Σ that does not bound a disk
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Surface theory

3. The curve graph, C(Σg), of a Σg

has the free homotopy classes of curves in the surface as
vertices
two vertices are connected by an edge if the classes have
disjoint representatitives

“Homeomorphisms f : Σg → Σg preserves the number of
intersections between curves”

The mapping class group of Σg

Mod(Σg) = Homeo+(Σg)/Homotopies

acts isometrically on the curve graph

4.
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Back to Heegaard splittings

A meridian of a handlebody H is a curve in Σg = ∂H that
bounds a disk in H

Two copies of the handlebody H of boundary Σg can be glued
by homeomorphism f : Σg → Σg to form a closed 3-manifold

M = H1 ∪f H2

“If [f ] = [f ′] in Mod(Σg), then H1 ∪f H2“ = ”H1 ∪f ′ H2”

The disk graph K(H) of a handlebody is the subgraph of
C(∂H = Σg) of all meridians

meridians

non-meridians
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Back to Heegaard splittings

The gluing function f maps the meridians of H1 to the
meridians of H2

f

The disk graph K(H1) is mapped to another subgraph
K(H2) ⊂ C(Σg)

The Hempel distance of the splitting M = H1 ∪f H2 is
df := d(K(H1),K(H2))
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Our result

Theorem:
if df ≥ 1, the manifold is irreducible
if df ≥ 3, the manifold is hyperbolic
if df ≥ k, the manifold cannot embed an incompressible
oriented surface of genus at least 2k

Theorem (Vafa,1988; Yoshizawa, 2014):

For every choice of RT invariant, there is a constant N
(depending on k) and a map τ ∈ Mod(Σg) such that

⟨H1 ∪f H2⟩ = ⟨H1 ∪τN◦f H2⟩ and dτN◦f ≥ k



Our result

Our result
Given a Heegaard diagram of M a fixed choice of k, one
can find in polynomial time (of degree 162× k1.6), a
splitting of a 3-manifold M ′ that has the same RT-invariant
of M , but of Hempel distance at least k



Thank you!


